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Abstract

Given scatterplot data {(X;,Y}),(X2,Y3),...(Xn,¥,)}, Y being a response and X a predictor, a
scatterplot smoother uses local averaging to estimate the dependence of ¥ on X. A simple example
is the running lines smoother, which fits a least squares line to the the Y values falling in a window
around each X value. A smoother generalizes the least squares line, which assumes the dependence of
Y on X is linear.

In this paper, we extend the idea of local averaging to likelihood based models. One such applica-
tion is to the class of generalized linear models (Nelder and Wedderburn (1972)) We enlarge this class
by replacing the covariate form z4 with an unspecified smooth function s(z). This function is estimated
from the data by a technique we call “Local Likelihood Estimation”— a type of local averaging. Multiple
covariates are incorporated through a forward stepwise algorithm.

The main application that we discuss, however, is to the proportional hazards model of Cox
(1972}, for censored data. The proportional hazards assumption A(t |z) = Ao(t) exp(zB) is replaced
by A(¢ |2) = Xo(t) exp(2(z)), and the function s(z) is estimated from the data by local likelihood
estimation.

In a number of real data examples, the local likelihood technique proves to be effective in uncov-
ering non-linear dependencies.

Finally, we give some asymptotic results for local likelihood estimates and provide some methods

for inference.
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LOCAL LIKELIHOOD ESTIMATION
Robert J. Tibshirani

1. Introduction.

Figure (1) contains 100 data pairs along with the least squares line summarizing the
relationship of a response (say Y) and a covariate (X). In Figure (2) , the least squares line
has been replaced by a “scatterplot smooth.” This smooth was computed by a type of local
averaging— around each X value a window of 20 points was formed and a least squares line
was fit to the points in the window. The value of the smooth at X is given by the value of the
“local line” at X. As we can see, the smooth captures the trend of the data better than the
least squares line. The reason is simple— the smooth doesn’t make a rigid assumption about
the form of the relationship between Y and X.

In recent years, there has been a great deal of interest in scatterplot smoothing by local
averaging (see for example Cleveland(1979) and Friedman and Stuetzle(1981)) and the avail-
ability of fast computers has been essential in this development. These smooths are useful
as a descriptive tool (as we have seen above) and also as building blocks for non-parametric
regression models. Important developments in the latter area can be found in Friedman and
Stuetzle (1981) and Breiman and Friedman(1982).

In this paper, we explore an application of smoothing ideas to other kinds of data. In par-
ticular, we consider (X,Y) data whose relationship is expressible through a likelihood function.
Take for example the situation in which Y is a 0-1 response and X is a covariate. For such a
data set, Figure (3) shows the logistic regression line, estimated by maximum likelihood. On
the same plot, the observed logits are shown. (Since we can’t take the logit of 0 or 1, the Y’s
were grouped first). In Figure (4) , the line has been replaced by a smooth. As was the case in
the scatterplot example, the smooth does a better job of capturing the relationship between Y
and X than the line does. In Figures (5) and (6) , we see another example. Figure (5) shows
the estimated log relative risk line given by Cox’s proportional hazards model, applied to a set
of survival data. In Figure (6) , the line has been replaced by a “log relative risk smooth”.

The smooths in Figures (4) and (6) were obtained from a procedure we call “local likeli-
hood” estimation. The basic idea is simple extension of the local averaging technique used in
scatterplot smoothing. Given a global method for estimating a linear response {e.g. maximum
likelihood estimation in the linear logistic model), we apply it locally, estimating a separate
line in a window around each X value. The value of the estimated line at X is the estimate of
the smooth response function at X.

By varying the window size, we can control the smoothness of the estimated function. The
larger the windows, the smoother the estimated function. When each window contains 100%
of the data, the local likelihood procedure corresponds exactly to the global linear method.



Hence local likelihood completely generalizes linear likelihood estimation.

This paper is devoted to the study of local likelihood. We describe the method in general,
showing how smooths like those in Figures (4) and (6) are obtained, and we will study some
of its theoretical properties. In the exponential family, the local likelihood method extends
the class of generalized linear models (Nelder and Wedderburn (1972)) by allowing covariates
to enter the link function in a non-linear fashion. We investigate the linear logistic model,
a member of this class, and its extension. We also explore in depth the application of the

method to the proportional hazards model. This model was the motivating example behind
local likelihood.

The sections are organized as follows. Section 2 defines the local likelihood method and
describes the estimation procedure for a single covariate. We also discuss a forward stepwise
algorithm for building multiple covariate models. Section 3 contains a short description of
the application of local likelihood to the logistic regression model for binary data. Section
4 describes in detail the application of the local likelihood procedure to Cox’s proportional
hazards model. We discuss a number of topics: bootstrapping the models, robustifying the fit,
and bias of the procedure. Finally, some real data examples are given.

Section § provides some asymptotic results for local likelihood estimates in the exponential
family. Consistency and efficiency of the estimates are discussed. We conjecture (without
proof) similar results for the proportional hazards model.

In the last section (6), we address two important questions: 1) how many parameters
are used up by a local likelihood smooth? and 2) is it reasonable to use Akaike’s Information
Criterion to choose the window size? We give approximate answers to these questions, backing
up our claims with a simulation study.
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Figure (3)
Logistic Line
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Figure (5)
Relative Risk Line
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2. Local Likelihood— A description.

2.1. Introduction

In this section we introduce the local likelihood idea. Since local likelihood estimation is
a generalization of scatterplot smoothing, we begin with a review of the latter.

2.2. A Review of Scatterplot Smoothing

Given independent data pairs {(z1,41),...(Zn,¥n)}, assumed to be realizations of a re-
sponse variable Y and a predictor X, a scatterplot smoother produces a decomposition of the
form

vi = 8(zi) + & (1)
Here s(-) is a “smooth” function and ¢; is a residual error. We won’t define exactly what
“smooth” means here; vaguely speaking, we’re thinking of s(-) as a function less smooth than
a straight line but smoother than an interpolating polynomial.

There are many ways to estimate 8(-)— we’ll concentrate here on the method of “local
averaging”. It is motivated as follows. If we knew the joint distribution of Y and X, a
reasonable way to find &(-) would be to minimize E(Y — s(X))?, where the expectation is taken
over this joint distribution. Conditioning on X = z, this has solution é(z) = E(Y | X = z) for
each z. In practice, we don’t know this joint distribution but have only a sample from it. The
idea, then, is to estimate E(Y |X = z) from the data. This leads to the class of local average
estimates for 8(:):

&(z:) = Avejen,s(z;) (2)
where “Ave” represents some averaging operator like the mean and N; is a “neighborhood” of
z; (a set of indices of points whose z values are “close” to z;). The only type of neighborhoods
we’ll consider in this paper are symmetric nearest nesghborhoods. Assuming that the data
points are sorted by increasing z value, these are defined by:

k-1 . . . . g -
—,l),...,t—1,$,%+1,...mtn(t+k !

- ™} 3)

The parameter k is called the span of the smoother and controls the smoothness of the resulting

N; = {maz(i -

estimate. The value of k£ must be chosen in some way from the data.

If Ave stands for arithmetic mean, then 4(:) is the running mean, the simplest possible
scatterplot smoother. The running mean is not a satisfactory smoother because it creates
large biasses at the endpoints and doesn’t reproduce straight lines (i.e. if the data lie exactly
along a straight line, the smooth of the data will not be a straight line). A slight refinement of
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the running average, the running lines smoother alleviates these problems. The running lines
estimate is defined by

§() = Poi + Prizi (4)
where ﬁo,- and ﬁl.- are the least squares estimates for the data points in N;:
Ljen,(2i — Zi)y;
Yien;(Zi — 2)? (5)
Boi = #i — PriZi

Bui =

and z; = %EieN.- zj, ¥i = %EiGN.' Yj-

The running lines smooth is the most obvious generalization of the least squares line.
When every neighborhood contains 100% of the data points, the smooth agrees exactly with
the least squares line. For smaller spans, it produces less smooth estimates. Although very
simple in nature, the running lines smoother produces reasonable results and has the advantage
that the estimates can be updated. That is, to find &(z;4,) from &(z;), only a O(1) operation
is needed. This reduces the overall algorithm from O(n?) to O(n).

2.3. Local Gaussian Smoothing

Since least squares estimation corresponds to maximum likelihood when the data are
Gaussian, it is not surprising that the running lines smoother can be described as a “running
maximum likelihood” method for Gaussian data. Assume as before that

vi = o(zi) + ¢ (6)

and in addition that ¢; ~ N(0,02). Then for z in a neighborhood N; of z;, a reasonable
approximation to s(z) is

8(z) ~ Poi + Priz (7)
Considering only the points in N;, the maximum likelihood estimates of By; and f;; are given
by (5) . Based on (7), this gives as an estimate of s(z;):

8(z;) = Boi + Prizi (8)

Hence running lines smoothing corresponds to finding approximate maximum likelihood esti-
mates in a neighborhood around each data point.

We call this type of estimation “LOCAL LIKELIHOOD ESTIMATION” or “LOCAL
LIKELIHOOD” for short. In this paper, we extend the idea of local likelihood to non-Gaussian
likelihoods. It can be applied in principal to any situation in which the effect of a covariate is
modelled through a likelihood. In fact, as we will see in the proportional hazards model, the
“likelihood” doesn’t even have to be a likelihood in the strict sense.



2.4. Local Likelihood: General Definition

Suppose we have n data tuples of the form (y;, z;, ¢;), where y is a response variable, z
is a covariate or predictor variable, and e is a vector containing any additional information.
(In censored data problems, ¢ would indicate whether y is censored; in many problems (like
regression), e is empty.) Suppose that modelling considerations lead to maximization of a
function of the form

L(ﬂmﬂl) = g(ylyy% . 'yn)01702" . .0,,,C1,C2, o °cn) (g)

where 0; = fy + p12;. For example, L(By, f;) could be a likelihood function and the estimates
maximizing L(By, 1) would be the maximum likelihood estimates. The LOCAL LIKELI-
HOOD method replaces fo + f1z; with an arbitrary smooth function s(z;):

L(a(zl), 8(2:2), e 8(15")) = g(yl,yz, > .m ,y,.,ol, 02, n - 0,,, €1, €2,.. .c,.) (10)

where 8; = s(z;). The problem is to estimate s(-) at the points {z;, z2,...z,}. Maximization
of L(s(z1),s(z2),...8(2n)) results in an unsatisfactory estimate due to overfitting. In many
situations, it simply reproduces the data. As an alternative, we define the local likelthood
estimate of a(z;) as

§(2:) = foi + Prizi (11)
where ﬁo; and )91.- maximize the local likelihood:
Li(Boi, B1i) = 9({yj, Boi + Prizj, ¢}, 5 € N;) (12)

The local likelihood procedure produces a smooth estimate of the curve s(-) at the points
{21, 22,...zn}. It avoids overfitting by averaging over neighborhoods. The width of the neigh-
borhoods (the span) controls the smoothness of the resulting estimate— larger spans will tend
to produce smoother curves.

As mentioned, the function L(fy,B;) need not be a likelihood, (in Cox’s model it is a
“partial likelihood”), but in any case, we call this procedure “Local Likelihood” estimation.

2.5. Local Likelihood— Definition in the i.i.d. Case

In the i.i.d case, we observe n independent data pairs {(z,y1), ...(Zn,¥s)} and we assume
that given X = z, Y has density
Y Isz(Y’o) (13)

where § = a(z). The likelihood is given by:

L(s(z1), 8(22), ... 8(za)) = [] £(u;,9;) (14)
1
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where 0; = s(z;).

The local likelihood estimate of s(z;) is

8(z:) = Boi + Prizs (15)
where ﬁo.- and ﬁ,,- maximize the local likelihood:
Li= T f(v;,B0i + Briz;) (16)
JEN;

2.6. Asymptotic Properties of Local Likelihood Estimates

Other than the fact that it produces smooth estimates, why is the local likelihood proce-
dure reasonable? On a heuristic level, it’s easy to see that for well behaved s(-) functions, if f,
and B are consistent estimators in the global case (e.g. m.le’s), then 3(z;) will be consistent
for s(z;). Consider a fixed point z;. As n — oo and the neighborhoods shrink in such a way
that k,,, the span for sample size n, goes to infinity, we have ﬁo.- — Boi, Bn‘ — Pii, (Bos and Bi;
being the true slope and intercept) and the error in approximation (7) goes to zero. Hence
3(z;) will converge to s(z;). When fy; and fj; are local maximum likelihood estimates, the lo-
cal likelihood estimates also enjoy the optimality properties of m.l.e’s. They are asymptotically
normal and first order efficient with respect to sample size k,. These properties are discussed
in Section 5.

2.7. The Bias—Variance Tradeoff

The span parameter controls the smoothness of the estimated function. Larger spans will
tend to produce smoother, less variable estimates, but these estimates will tend to be biassed
if the underlying function is non-linear. Conversely, smaller spans will produce less biassed
but more variable estimates. A data-based criterion is therefore needed to select the span that
best trades off these two factors for a given data set. We describe such a criterion in Section
2.12.

2.8. Computation of Local Likelihood Estimates in the i.i.d. Case
To find each f8; = (Boi, B1i) we use a Newton-Raphson search. Let U;(8°) be the 2 by 1

score vector with jth entry dlooL
Ui(8°) = (—"” i ) 17
e =(%5) 5 (1)
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and I;(8o) be the 2 by 2 observed information matrix with jkth entry

d%logL;
L(B%) = - (——') 18

(7 8BjiPi / p=po (18)
for the ¢th local likelihood both evaluated at some point #°. Then given an initial guess ﬁ:.'""',
the Newton-Raphson method produces the new trial value:

e = B + I(B) U (Bi) (19)

This procedure is iterated until convergence. It is used to find J; (and hence &(z;)) for each
neighborhood, going in order as 1 runs from 1 to n. The local likelihood estimate J; is used as
a starting value for the maximation of L;4,; because the estimates don’t tend to differ much
from one neighborhood to the next, convergence is typically achieved in 1 or 2 iterations.

Since an O(kn) operation is required for each neighborhood, the the entire procedure is
O(n?) (assuming k, ~ n). This is not a problem for moderate n (say n ~ 200) because of
the small number of iterations required. For larger data sets, we speed up the procedure by
calculating the fit only every mth point; this reduces the running time by about a factor of m.
The smooths for the remaining z-values are obtained by interpolation.

The scatterplot smoother of Friedman and Stuetzle (1982) uses updating formula to
achieve an O(n) algorithm. We have been unable to obtain such formulae for this problem
because of the non-linear nature of the estimation.

2.9. Exponential Family Case

A special case of the above occurs when f is a member of the exponential family. Then
the log likelihood has the form

log L= {y;#; — b(0;) — c(y;, )} (20)
1

where §; = s(z;) and o is a scale parameter. If o is unknown, (20) is not generally an
exponential family but the estimation procedure we will describe is unchanged because the
local score function for 8 doesn’t involve o.

The local log likelihood is:
log L; = Y _ {v;8i — b(0;) — c(y;, o)} (21)
JEN;

where @;; = foi + Prizj. Letting X represent the n by 2 design matrix with first column
(1,1,...1)" and second column (z1,22,...2,)*, and letting W = diag{I(; € N;)}, the score
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function has the simple form
Ui(Bs) = X'W (g - b'(XB)) (22)
The observed information is I;(8;) = X*Wb"(X8;)X and the Newton-Raphson step is:
Bree = Bt 4 I (B XW (y — B(XA)) (23).

In the above, we have modelled the natural parameter 8. We could just as well model
some other parameter (like E(y)); in any specific problem, there may be reasons to prefer one
parametrization to another. For example, in the binary response problem, it is more convenient
to model the natural parameter log T;Lp then the expectation p because the latter would require
that the estimated smooth stay between 0 and 1.

2.10. Relationship to Generalized Linear Models

Model (20) can be viewed as a extension of the class of generalized linear models (Nelder
and Wedderburn (1972)). A generalized linear model is defined by Y |z ~ f(Y,0) and E(Y) =
9(Bo + P1z), where f has the exponential form (20) . If g (the “link function”) is invertible,
this corresponds to g~}(E(Y)) = fp + f1z. In the local likelihood set-up, we have generalized

Bo + P1z to s(z).

2.11. Number of Parameters— “Degrees of Freedom”

In Section 6, we discuss an approximate method for determining how many independent
parameters a local likelihood smooth is really fitting. Since the local likelihood estimate pro-
duces a function smoother than the data, we would expect that it uses less than n independent
parameters. This is the case. Consider a running lines smoother with span 8. Such a smoother
is linear in that the fit § can be written as P(s)y where P(s) is a smoother matriz. P(s) will
depend on the set of z values observed, as well as the span. In traditional linear least squares
estimation, P(s) is the hat matrix X(X’X)~*X*. We show in Section 6 that for a running
lines smoother with span s, the number of degrees of freedom used up is trace(P(s)). (This
result and related results are also given in Cleveland (1979)). We also show that for any local
likelihood fit (in the exponential family), with span s, the number of degrees of freedom is
about trace(P(s)). Thus, although the matrix P(s) is only used in the estimation process of
the Gaussian local likelihood model, (and not in the estimation of other local likelihood mod-
els), the trace of this matrix turns out to be the relevant quantity nonetheless. Note that this
generalizes the result in linear estimation, in which P(s) is an idempotent projection matrix
and hence trace(P(s)) = rank(P(s)) = p, the rank of the column space of X.
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The quantity trace(P(s)) turns out to be significantly less than n. In an example given
in Section 6, with 100 data points and s = .5, trace(P(s)) is 3.65. Thus we are really fitting
only 3.65 “parameters”.

We also note in Section 6, however, that the “number of parameters® or “degrees of
freedom” should be used only as a rough rule of thumb. This is because the distribution
involved is not chi-squared with trace(P) degrees of freedom, but is more spread out. If a
precise estimate of the distribution is required (for a given data set), a simulation technique
described in Section 6 can be used.

2.12. Span Selection

The estimation of a local likelihood smooth requires the choice of a span size. In scat-
terplot smoothing, one popular method for choosing the span size is cross-validation. For a
number a trial spans, smooths are estimated leaving out each data point one by one. A cross-
validation sum of squares is calculated and the span having the smallest value is selected. This
is detailed in Friedman and Stuetzle (1981).

In the local likelihood problem, cross-validation turns out to be very expensive computa-
tionally . As an alternative, we use a form of Akaske’s Information Criterion (AIC). In fitting
a generalized linear model with maximized likelihood L and p independent parameters, the
AIC is defined by:

AIC = -2logL+ 2p (24)

The first term measures the goodness of fit of the model, while the second term penalizes the
number of parameters used. Hence the AIC attempts to tradeoff variability and bias.

We make use of the AIC criterion for selecting the span of the local likelihood smooth.
Using trace(P(s)) as an approximate number of degrees of freedom, the span size s is selected
to minimize AIC based on the value of the global likelihood (10) . In a number of examples,
we’ll see that this procedure chooses reasonable span sizes, producing estimates that aren’t too
jagged nor too biassed. We justify this use of AIC is Section 6.

2.13. Effects of Sample Size

The local likelihood technique, being non-parametric in nature, will work best in larger
samples (say n > 100). Sample size is not the only factor, however— the amount of (non-linear)
structure in the data relative to the noise component is also important. We’ve found that the
technique can pick up non-linear structure in some data sets with as few as 60 observations.
More often, however, the local likelihood algorithm chooses a large span for small data sets,
and the resultant estimate closely resembles the global linear estimate.
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2.14. Handling of Ties

For data with tied z values, two things are done. First, each neighborhood is expanded
(if necessary) to ensure that if a point j is in a given neighborhood, so is any other point &
having z; = z;. This makes the estimation procedure invariant to the incoming order of the
data points. Secondly, the smooths for each of the tied values are averaged and each smooth
value is assigned the average. That is, if z; = 241 ... = Zj4m, then for each j < s < 7+ m,
(z;) is assigned the value }:;"'m 8(z;)/(m +1).

2.15. Multiple Covariates and Backfitting

The above discussion shows how the local likelihood idea can be used to estimate the
smooth for a single covariate. If p covariates are available, there are two ways the model could
be generalized. One could assume 8 = s(-,+,...--:), a smooth p dimensional function, and
then estimate 8 by local averaging in p-dimensional space. This procedure would suffer from
the so-called curse of dimensionalsty: in high dimensions, averaging neighborhoods grow very
large. Consider for example a data cloud uniformly distributed in a ten dimensional unit cube.
Then a hybercube- shaped neighborhood containing 10% of the data points would have sides
of length .8! (since .81% s .1). Hence the local averaging would not be “local” at all.

To avoid the curse of dimensionality, we can smooth one co-ordinate at a time. The
model takes the form 0 = §=1 8;(-). This model is less general than the p-dimensional
smooth model, but one can make it more general by allowing smooth functions of products,
e.g. 8(z;z;). To estimate the 8;(-)’s, a forward stepwise algorithm is used. This algorithm is
analagous to a forward stepwise regression procedure. The algorithm proceeds by smoothing
on each variable, and selecting the smooth that most improves the fit. When one smooth
is selected, the remaining variables are smoothed and the one that most improves the fit is

chosen. The process is repeated until no new variable can significantly improve the fit.

Now suppose that this procedure selects a smooth §;(-) at the first step and a smooth
42(-) at the second step. Then the smooth 4;(-) may not be “optimal” given that 45() is in the
model. Hence it is desirable to re-estimate &;(-) to accomodate 4;(-). Now given the adjusted
estimate 4}(-), we can adjust 32(-) and so on, iterating until convergence. This process is
called “backfitting” (Friedman and Stuetzle(1982)). In general, with more than two smooths,
whenever a new smooth is entered into the model, the smooths already in the model are
adjusted to accommodate the new smooth. Specifically, all but one of the smooths are held
constant and the remaining smooth is re-estimated. This is done for each smooth in turn until
the fit no longer improves by a significant amount. As an example, suppose a new smooth
4,41(-) is added to a model containing smooths 4;(:),...4,(-). Then the backfitting procedure
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would consist of estimating s;(-) in the model

0="> &()+2(-) (25)
k#j
treating Ek;ﬁj éx() as a constant. This is done for j running from 1 to r + 1. The entire cycle
is repeated until convergence.

We have no proof of convergence for the backfitting algorithm, although it has converged
in all the examples that we’ve tried. In a simple linear regression framework, with p (possibly
non-orthogonal) covariates z;, 22, . . . zp, one can show that backfitting converges to the correct
answer (Stuetzle (1983), personal communication). That is, if we project the current residual
vector onto each covariate in turn, the residual vector converges to the correct residual vector
i.e. the response minus the projection of the response onto the column space of z1,zs,.. . z,.
Breiman and Friedman (1982) show convergence of a backfitting algorithm in a additive smooth
model, for a restricted class of smoothers.

2.16. How do we select terms for the model?

This question can be addressed through examination of —2log L(§), but it is customary
in gener-lized linear modelling to work with an equivalent measure, the “deviance”. The
deviance :s 2log(L(y)/L(§)) which equals to —2log L(§} + constant. At each stage, then, we
find the smooth that decreases the deviance the most. This smooth is then added to the model
if the decrease in the deviance is large compared to the number of “parameters” used up by
the smooth.

An outline of the resulting algorithm is:

Forward Stepwise Algorithm

While (not all variables have been selected)
Find the smooth that decreases deviance the most
If decrease < thresholdl ezst

If current model contains more than one smooth
Backfit smooths untsl decrease in deviance < threshold?

End Whaile
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Thresholdl can be set to a value determined by the number of degrees of freedom, or set
to zero to allow all covariates to enter. Threshold?2 is set to some small number like .001. The
output of the algorithm is {8,(-),32(:),...8n(:)} where h is the number of smooths selected.

2.17. The Scale Parameter in the Exponential Family case

The exponential form (20) may or may not contain an unknown scale parameter, but in
any case, the likelihood estimation procedure is unchanged because the score doesn’t involve
the scale. An estimate of scale is needed, however, if the deviance is to be used to assess
importance of model terms. As is true for standard generalized linear models, we would fit
some maximal model and use the mean deviance as our estimate of scale. This could be used
to form a “scaled deviance”, proceeding thereafter as if the scale were known.

In the only exponential family model we discuss (the logistic model) the scale is a function
of the mean, so this issue doesn’t arise. Hence we will not go into scale estimation in this paper.

2.18. Other Fitting Procedures

The local likelihood procedure uses local linear estimation because it works well (especially
in reducing bias at the endpoints) and is simple. More sophisticated kernel-type estimates could
be used to make the procedure robust and increase the smoothness of the estimated function.
Borrowing ideas from scatterplot smoothing (see e.g. Cleveland (1978)), we can downweight
points based both on their distance from the center of the neighborhood and the size of the
residual. While we don’t discuss such a procedure in general terms, a downweighting algorithm
for the proportional hazards in discussed in Section 4.11.
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3. Application to the Logistic Model.

38.1. Introduction

In Section 2, we discussed how the local likelihood technique could be applied to any
generalized linear model. Probably the most commonly used such model (besides the normal
regression model) is the linear logistic model for binary data. In this section, we’ll briefly
illustrate the local likelihood procedure in this setting; full details can be found in Hastie
(1983)

3.2. The Problem and a Review of the Linear Logistic Model

We have data of the form {(yi, z1), (y2, Z2), -..(yn, Zn)} Where the response y is 0 or 1 and
z is an explanatory variable. The observations are assumed to be independent. The problem
is to investigate the dependence of y on z.

Let z = (1,z) and let p(z) = P(y =1 |2). The log likelihood of the data is

log L= {yilogp; + (1 - y;)log(1 — p;)} (26)
J=1

where p; = p(z;). Letting X represent the matrix with jth row equal to (1,z;), the score
equation has the form
X'(y-p)=0 (27)

The linear logistic model assumes that
logit p(z) = 2'8 (28)

Written as a function of 8, the log likelihood is

log L(B) = Y _{wiz{B — log(1 + %:P)} (29)

=1
A Newton-Raphson procedure is typically used to find . The expected information matrix is
I(B) = X*Diag{p;(1 - p;)} X (30)
and the Newton-Raphson iteration has the form

Bnew = 30” + I_l (pdd)xl(’ - ﬁold) (31)
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3.3. The Local Likelihood Generalization

The formulation of subsection 2.3 for generalized linear models can be applied directly.
Instead of assuming a linear form for logst p(z), we assume

logit p(z) = 8(2) (32)
The local likelihood for z; is
log Li(B:) = 3 {y;z'B; — log(1 + ¢*i%)} (33)
JEN;

Letting B; maximize log L;(8;), the local likelihood estimate of s(z;) is 3(z;) = zfﬁ;. With
multiple covariates, the model takes the form :

4

logit p(z) = 3" o) (34)

1

A forward stepwise algorithm is used to select covariates, as described in Section 2.

3.4. Example 1: Breast Cancer Data

A study conducted between 1958 and 1970 at the University of Chicago’s Billings Hospital
concerned the survival of patients who had undergone surgery for breast cancer (Haberman
(1976)). There are 306 observations on 4 variables.

y=1 if patient survived > 5 years, 0 otherwise
z1=age of patient at time of operation
zo=year of operation

zz=number of positive axillary nodes detected

The local likelihood procedure applied to all three covariates produced the smooths shown
in Figures (7) , (8) , and (9) . Table 1 shows the decrease in deviance due to each variable.
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Table 1. Analysis of Breast Cancer Data

Model Deviance Number of Parameters
Constant 3563.67 1
Age(span= .6) 346.08 2.41

Age + Yr of Oper(span .5) 343.91 2.41 + 2.54
Age+Yr of oper+ # of nodes(span .5) 307.74 2.41+2.54 + 2.41

Age and number of nodes are important, year of operation is not. The final model has a
deviance of 307.74 on (306-2.41-2.54-2.41)=298.54 degrees of freedom.

Landwehr et al (1984) analyzed this data set to explore the usefulness of partial residual
plots in identifying parametric forms of covariate effects. Their final model was

logit p(Z) = ﬂo + Zlﬂl + Zfﬂg + Ziﬂs + 22ﬂ4 + 2132ﬂ5 + (loy(l + Za))ﬂe (35)

The deviance of this model is 302.3 on 299 degrees of freedom. The fitted terms for each
covariate are super-imposed on Figures (7) , (8) , and (9) (broken lines). The functions for z,
and z3 are similar; they differ for z,, but the overall effect of this variable is very small.

Hastie (1983), Hastie (1984) and Hastie, Tibshirani and Owen (1984) discuss the relative
merits of the local likelihood and partial residual plot procedures. They give two reasons to
suggest why the local likelihood procedure is preferable:

e The partial residual technique, in suggesting the parametric form for a covariate effect,
relies on the assumption that the covariate forms for other effects are correct. Indeed
these effects are usually assumed to be linear. The local likelihood procedure finds the
best functional form for all covariates simultaneously.

o The partial residual technique requires quite a bit of ingenuity in identifying the various
covariate effects. The local likelihood procedure, on the other hand, is automatic.

3.6. Comparison to the Scatterplot Smoothing Approach

The local likelihood method extends the linear logistic model through a type of local
averaging within the likelihood framework. Computationally, it would seem simpler to ignore
the fact that the y’s are 0’s and 1’s and apply scatterplot smoothing techniques directly. This
works fine for a single covariate: a scatterplot smooth of y on z, is shown in Figure (10) . On
the same figure, the estimated local likelihood probability smooth exp(é(z;)/(1 + exp(4(z1))
is shown (broken line). Not surprisingly, the two smooths are very similar.

With multiple covariates, the local likelihood approach is more attractive for precisely
the same reasons that the linear logistic model has gained popularity. In fitting a model of
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the form y = )" &(z;), one would have to ensure that the fitted probabilities lie between 0
and 1. This would require some sort of truncation of the smooths. On the other hand, the
local likelihood approach models logit p so the fitted probabilities are always between 0 and 1.
Secondly, the local likelihood approach produces an additive model on the logit scale. A large
body of literature suggests that for many types of data, effects are more likely to be additive
on the logit scale than on the probability scale. One could try to adapt the regression approach
by grouping the y's then using the logit of the grouped values as responses. This would likely
produce similar results to the local likelihood approach if the information loss due to grouping

wasn’t too large.

A note on the figures

Many of the figures in this section and the next section use circles to  represent fitted
smooth values. The area of each circle is proportional to the number of data points it represents.
This is designed to indicate the density of points in each part of the smooth.
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Estimates for Year of operation
Circles: L.L emooth, Broken line: parametric function
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Figure (10)
Estimates for Age
Circles: L.L smooth, Broken line: Scatterplot smooth
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4. Application to Censored Data and the Cox Model.

4.1. Introduction

In the censored data problem we observe data triples (y;, z;,6;),1 = 1,2,...n where §; is
indicates whether or not the response y; is censored. The data are assumed to be sorted by
the covariate z, that is z; < z3 < ... £ z,. The proportional hazards model of Cox(1972)
models the relationship between y and z by assuming that z acts on the hazard function in a
multiplicative way:

A(y | z) = o(y) exp(Bz) (36)

where Ag(y) is an unspecified function, and A(t |z) is the hazard function at covariate level z
defined by

Pt<T<t+At|T>t,z)
At '

This assumption allows B to be estimated independently of Ao(y) by maximizing the partial
kikelshood:

Mtlz) = Jim (37)

pL=T[ <2 (38)
- , 8
i€p 2jeR; e

where D is the set of indices of the uncensored y’s and R; is the risk set prior to y;. The local
likelihood generalization of (36) is

Ay |2) = Xo(y) exp(s(z)) (39)

and the partial likelihood of the data is

T e a(z)
PL= & Tren, w2 (a(z7) &

where R; = {7 |y; > y:}, the risk set at time y; — 0.

To estimate 8(z;),8(z2),...8(2a), we apply the local likelihood technique introduced in
Section 2. As before, let N; be a symmetric neighborhood around z;:

k-1

N; = {maz(s - >

J1)yeeim Lii+1,...min(i + ?,n)} (41)
For z € N; we assume 8(z) & a; + z8;, and the local partial likelihood for the data in N; is

PL; = H €Xp (al' + zlﬂs’) (42)

leDn; 2eierinN; €XP (i + 2;8))
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To estimate a; and f;, we maximize PL;. Note, however, that a; is not estimable from
PL; since the ezp(a;) terms cancel one another giving

pL.= [[ exp (z18:)

- leDNN; 2 iernn; €XP (2;5:) (43)

Let #; maximize Li(-). Although a; (thus s(z;)) is not estimable locally, we can use the slope
estimates {£1,... 2} to estimate {a(z1),...s(zn)}, as follows. We have s(z;) = J7 8'(t)dt and
8'(z) = B; for z € N;, hence to estimate s(z;) we can use any estimate of [ &'(t)dt based on
(21,81), - .. (zn, Bn). Before discussing some particular integral estimators, it is important to
note that the choice of ¢ is arbritrary, reflecting the fact that s(z) is only determined up to an
additive constant. Substitution of s(z) + ¢ for s(z) in (36) doesn’t change the model because
the factor e® can be absorbed into the arbritrary function Ag(t). For simplicity, then, we define
¢ = z1, so that 3(z;) =0.

To estimate f:l' 8'(t)dt, we can use the simple rectangular rule defined by

8(2) = Y _(2j — zj—1) * hi (44)
1

for ¢ > 1 and #(z;) = 0. This could also be written as §(z;) = (z; — ;1) * f;, so that the
rectangular rule constructs the estimate 4(-) by joining each line segment to the previous one,
with prescribed slope ﬁ,-

For greater accuracy, we instead use the trapezoidal rule defined by

i(zi) =) (2 — zj—1) * (ﬂ'_";@

1

(45)

for ¢+ > 1 and 4(z;) = 0.

The procedure is summarized in the following algorithm:
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Local Likelihood Smoother for the Cox Model

Fori=1ton
Find #; that maximizes PL;(-)

End For

5(21) =90

Fori=2ton

3(z:) = Ti(aj — zjoq) « Ctbiz)

End For

Output {5(z1),3(22),...8(zn)}

4.2. Significance of a Smooth and “Degrees of Freedom”

In proportional hazard modelling, the “deviance” has no obvious analogue, so one works
directly with —2log PL to assess significance of a smooth. The “degrees of freedom” of the
smooth are more difficult to obtain, however. The simulation study in section 6 shows that
the formula trace(P) is biassed downward for the Cox model. Therefore, we find the mean
deviance decrease by the simulation technique described in that section. The trace formula is
still adequate for span selection, however, since biasses will tend to cancel out in comparing
two spans.

4.3. Handling Tied Survival Times

For data with tied t; values, we use the approximation suggested by Peto(1972) and
Breslow(1974) for the partial likelihood

exp (2 - B)
: (Ejen(c,-) exp (z; - B))%

where d; equals the number of failures at t; and z; equals the sum of z;’s for items failing at
t;. This approximation is used for each of the partial likelihoods PL;(-).

PL s~

(46)
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4.4. Multiple Covariates

With more than one covariate, the model takes the form

P
Mt |2) = do(2) exp (D 4;(") (47)
=1
The smooths are estimated in a forward stepwise manner, with backfitting, as discussed in
Section 2.

4.5. Example 2: The Stanford Heart Transplant Data

The first example that we will use for illustration of this technique is the Stanford Heart
Transplant Data, as reported by Miller and Halpern(1982). There are 157 observations con-
sisting of survival time after transplant and two covariates: age (in years) at time of transplant
and T5 mismatch score. The procedure chose a span size of .7 and produced the smooth shown
in Figure (11) . The actual estimate of relative risk (ezp(é(-})) is shown in Figure (12) . A
summary of the results is shown in Table 2.

Table 2. Stanford Heart Transplant Data
Analysis of Age

Model —2Log Likelthood Number of Parameters
Null 902.40 0

Age (linear) 894.82 1

Age + Age? 886.24 2

Age (smooth, span .7) 884.65 2.95
Piecewise linear 885.40 2

The smooth reduced —2log PL from a null value of 902.40 to 884.65. For comparison,
a standard proportional hazards model with a single term for age produced a value of 894.82
for —2log PL and the addition of a quadratic term for age reduced it to 886.24. The resulting
quadratic function is shown in Figure (11) (broken line). The smooth in Figure (11) suggests
that the relative risk before age 45 is approximately constant, while the quadratic curve,
perhaps misleadingly, indicates a decrease in risk before age 45. We note that the smooth
produces a smaller value of —2log PL (by 1.6) but uses .95 more “parameters”.

Based on Figure (11) , we tried to summarize 4(-) by a piecewise linear covariate z = —.2
for age < 44 and z = .12 x age — 5.5 for age > 44. Using z as a covariate in a model of the
form Ao(t) exp(Bé(z)), a standard computer program for fitting proportional hazards models
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produced a value of 885.40 for ~2log PL. This provides further evidence that the quadratic
shape for the relative risk may not be realistic.

4.6. Stanford Heart Transplant Data: Age and T5

The forward stepwise algorithm was run on the Stanford Heart Transplant data described
in Example 2. The smooths for each variable separately are shown in Figures (11) and (13) .

The threshold value was set to zero to allow both variables to enter. The results are summarized
in Table 3.

Table 3. Stanford Heart Transplant Data
Analysis of Age and TS

Model —2Log Likelthood Number of Parameters
Null 902.40 0

T5 (smooth, span= .7) 899.99 2.68

Age + TS 882.53 2.95 + 2.68

Age + T5 (backfit) 882.52 2.95 + 2.68

Age was entered first, then T5 mismatch score. The smooth for T5 is shown in Figure
(14) . Backfitting had only a negligible effect, so the smooth for age was virtually identical to
Figure (11) . The results indicate that the effect of T5, after adjusting for age, is very slight.

4.7. Example 3: Mouse Leukemia Data

Kalbfleisch and Prentice (1980) analyzed the results of a study designed to examine the
genetic and viral factors that may influence the developement of spontaneous leukemia in
AKR mice. The original data set contains 204 observations, with six covariates and 2 causes
of death(cancerous and non-cancerous) measured. Kalbfleisch and Prentice perform a number
of analyses; we will follow one of them here, using any death as the endpoint and the four
covariates:

z;: antibody level (%)
z2: Gpd-1 phenotype
z3: sex(l=male, 2=female)

z4: coat colour
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Antibody level took on continuous values, although about half of the mice had a value of
0. The other three covariates were binary. Of the 204 observations, 4 had missing values and
were discarded.

Table 4 shows the results of forward stepwise local likelihood estimation applied to these
data.

Table 4. Mouse Leukemia Data

Multivariate Analysis
Model —2Log Likelshood Number of Parameters
Null 1189.06 0
Antibody (smooth, span= .5) 1173.98 1.85
Antibody+Gpd-1 1170.90 1.85+1
Antibody (linear) 1183.16 1
Antibody (linear + quadratic) 1183.07 2
Piecewise linear 1177.34 2

Each of GPD-1, sex and coat color were modelled with a single parameter. Antibody
was the most important factor, reducing —2log PL by 15.08. Gpd-1 was next in importance
but not significant at 95%. A graph of the estimated smooth for antibody in shown in Figure
(15) (the smooth values were not joined so that the distribution of antibody levels could be
seen). It is markedly non-linear, changing slope at antibody level = 7.5%. Also included in
Table 4 are linear and quadratic terms for antibody. Even with a quadratic term, the fit of
the parametric Cox model is significantly worse than the local likelihood smooth.

Based on Figure (15) , a piecewise linear covariate was created by joining each of the
left and rightmost smooth values to the bending point by straight lines. —2log PL for this
covariate was 1177.34, still significantly worse than the smooth model. This indicates that the
bowed shape of the smooth between antibody levels 7.5% and 80% is supported by the data.

4.8. Bootstrapping the models

To assess the variability of an estimated relative risk curve, the bootstrap (Efron (1979))
can be applied. As in the regression modelling, there are (at least) two ways to boot-
strap: we can resample the triples (y;,z;,6;) or the resample the residuals (r;,§;) (where
ri = Ao(y:) exp(3(z;))) and add them back to the fitted model. As in the regression case, the
second method assumes that the fitted model is correct.

The results for these two bootstrap methods applied to Example 2 are shown in Figures
(16) and (17) . 20 bootstraps were computed for each method. The two plots indicate about
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the same amount of variability for the low and medium age groups, but somewhat surprisingly,
the residual sampling shows greater variability in the higher ages. The use of the bootstrap
for the proportional hazard model requires further study; Efron(1980) looks at the bootstrap
for the Kaplan-Meier curve.

4.9. Case Control Data and a Comparison to Thomas®’® Method

Thomas (1983) provides a method of finding the maximum likelihood estimate of r(z)
in the proportional hazards model A(¢ |z) = Aq(t)r(z) subject to #(z) monotone in z. The
algorithm is extremely complex and not fully understood by this author. It produces a step
function () with steps occurring only at some of the failures.

Thomas applied his algorithm to a data set consisting of 215 lung cancer cases, each
matched with § controls, sampled from a large cohort of Quebec chrysotile miners and millers.
The covariate of interest was total dust exposure. The effect of various levels of dust exposure
was desired so that industry standards could be established.

In order to handle case control data of this type, only a small change is required in the
local likelihood procedure. The local partial likelihood simply becomes a partial likelihood
for case-control data. This, in turn, is the same as the partial likelihood for prospective data,
except that each risk set consists of a case and its associated controls (see Prentice and Breslow
(1978) for details). It turns out that in the modified local likelihood procedure, a case-control
set only enters into the partial likelihood for a given neighborhood if the case and at least one
control exist in the neighborhood.

Figure (18) shows the results of the various estimation procedures applied to the lung
cancer data.* The solid line is the local likelihood smooth ezp((-)), and the step function
(dashed line) is Thomas monotone m.l.e. The functions are in qualitative agreement, with the
monotone m.l.e suffering from its jagged shape.

The advantages of the local likelihood procedure over Thomas’ method are clear. The
monotone m.l.e is not smooth and is forced to be monotone. As well, Thomas’ procedure can
handle only one covariate. The local likelihood procedure suffers from none of these problems.

* Unfortunately, we could only obtain a slightly smaller data set from Thomas, consisting of 188 of the 215
case-control groups. The local likelihood procedure was applied to this reduced data set, while Thomas’

procedure was applied to the full data set
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4.10. A Bias Study

In this section we discuss a few simulations designed to investigate how well the proce-
dure estimates the true underlying function. In particular, we want to find out how much it
underestimates curvature for larger spans, especially at the endpoints.

A sample of 200 X values were generated from U(—1,1), and survival times T were
generated from the model logT = 5 + 4z% + ¢ where ¢ had the extreme value distribution
ezp(e — ezp(c)). This corresponds to the hazard model A(t |z) = ezp(—5 — 42%). Censoring
times C were then generated from U(0,11), and the observed response was ¥ = min(T,C).
This resulted in an average censoring rate of 51 percent. Our aim here was to found out how
well the procedure reproduces curvature in the middle of the covariate range (so that endpoint
effects don’t enter in). Figure (19) shows the average of 20 replications (with the same set of
z values) allowing the procedure to choose the span by the AIC criterion. Since the functions
are determined only up to an additive constant, they were translated to have the same mean
over the range of z. The average smooth captures the shape of the true function remarkably
well.

Next, we investigated the effect of endpoint bias. We generated data from the same model
as above, except that X was U(—1,.5) (We cut off the X range so that the true function would
be non-linear near an endpoint.) Figure (20) shows the average of 20 replications, allowing
the procedure to choose the span. The average smooth underestimates the curvature, but
reproduces the function quite well.

We conclude from this modest study that the procedure has low bias, with a tendency to
underestimate curvature slightly at the endpoints.

4.11. A Robust Fit

There are two types of influential points that can create problems in regression modelling:
outliers in time space and outliers in covariate space. The first type are not as much of a
problem here because the partial likelihood depends only on the ranks of the survival times.
Still, Cain and Lange (1983) give an example in which a few large survival times have a large
effect on the regression coefficient.

Outliers in covariate space are potentially more dangerous. Because of the local nature of
the fitting, it will not be as much a problem in the local likelihood model as it is in the linear
proportional hazards model, but with spans as large as .7n, it is still a concern.

A simple modification of the fitting procedure can help reduce the effect of covariate
outliers in both the standard and local likelihood proportional hazard models. The idea is
to downweight observations based on their distance from the “center” of the data. This idea
is exploited in the bounded influence regression literature (see Krasker and Welch (1973)
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and the references therein). In order to define a “weighted” partial likelihood estimate, we
need to define the partial likelihood for a sample with weights w; on (y;,z;,6;), 1 =1,2,...n.
(3°F wi = n). Consider first the case where there are no ties in the original data. It is natural to
require that when the w;’s are integers, the weighted partial likelihood should exactly coincide
with the partial likelihood for a sample with w; copies of point i. A form suggested by Cain
and Lange almost satisfies this requirement:

w0 _ ezp(z:f) o
e ;Iel (zjeR.- w.-ezp(Z,'ﬂ)) (48)

When the weights are integers, this reduces not to the exact partial likelihood for the corre-

sponding sample, but to the standard approximation for tied data given in Section 3.2. As
long as each w; is small compared to ) jer; Wj» (as it will be in our case) this approximation
is adequate. When the original data contains ties, we can modify (48) :

d;
PLY = II CZP(E1 szJﬂ) o (49)
€D [Ycp, wiezp(z;B)|1
where d; is the number of failures at y;. Expression (49) reduces to the correct (approximate)
partial likelihood when the weights are integers.

Maximation of (49) with appropriate weights provides a more robust fitting procedure.
Let z° be some “center” of the covariate space and let v; be some scaled measure of distance
of z; from z°. Then a reasonable choice of weights is w; ~ e~%. For the linear proportional
hazards model, it would be natural to choose z° = 2 and

v; = z;-(X'X)'lz,- (50)
In the univariate case, this reduces to

(z; - z)? 1

U le -2 T w 1)

For the local likelihood extension of the model, we can use partial likelihood form (49)
in each neighborhood, and weights proportional to e~% where

N C k)
T X (=~ i)

Note that z; is used as the center of the neighborhood instead of the mean— this ensures that

+ é (52)

points near the ends receive large weights in their own neighborhoods.

Figure (21) shows the robust version of the local likelihood procedure applied to age
variable (solid line). The smooth looks very similar to the unweighted smooth (broken line);
this is not surprising since there are no outlying ages in the sample. Figure (22) shows the
unweighted smooth (broken line) applied to the sample after having moved a failure at the
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highest age (62) to 92 (only the portion of the the smooth from ages 12 to 62 is shown). The
weighted smooth (dotted line) looks much like the weighted smooth applied to the original data
(solid line, same as solid line in Figure (21) ). The downweighting has successfully reduced the
effect of the outlying point on the overall smooth. Of course, the weighting scheme described
here could be applied within the parametric setting, but we haven’t pursued this.

The “robustifying” scheme discussed here is important if the local partial likelihood pro-
cedure is to be used in “auto-pilot” mode; alternatively, since each covariate is fit separately,
a simple scatter diagram of each covariate should reveal any large outliers in covariate space.

In the theoretical investigations of the following sections, we’ll restrict attention (for
simplicity) to unweighted smoothing procedures.

4.12. Extending the Model

There are (at least) two ways that the model could be extended. The first way would
be to allow time-dependent covariates. In principle, this would be straightforward; as in the
standard proportional hazards model, one would simply insert the “current” covariate values
when constructing each term of the partial likelihood. There may be computational problems
with this, however. With fixed covariates, the risk sets can be computed by “stripping off”
each failure or censoring as they occur. With time-dependent covariates, however, the risk sets
must be recomputed for each failure time. This would increase the cost by about a factor of n.
We haven’t tried implementing time-dependent covariates; this may be pursued in subsequent

research.

Another way to generalize the model is to allow linear combinations of covariates to enter
into the model. The form of the model would be

At |2) = do(t) exp(D_(s(a; - z))) (53)

The vectors a; could be found by a numerical search. This is the “Projection Pursuit Re-
gression” idea introduced by Friedman and Stuetzle(1981). Besides the obvious computational
cost, this model would suffer from a lack of interpretability.
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Local Likelihood Estimate for Age
Circles: L.L smooth, Broken line: quadratic fit
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Figure (12)
Local Likelihood Estimate of Relative risk for Age
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Figure (13)
Local Likelihood Smooth for T5 Mismatch Score
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Figure (14)
T5 smooth with age in the model
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Figure (15)
Mouse Leukemia Data: Smooth for Antibody
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Figure (16)
Bootstrap smooths (Resampling (y;, z;, 6;))
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Figure (17)
Bootstrap smooths (Resampling residuals)
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Figure (18)
Estimates of Relative Risk for Lung Cancer Data
Circles: L.L smooth, Broken line: Monotone m.l.e
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Figure (19)
Average of 20 Local likelihood fits, varying span
Solid line: L.L fit, Broken line: true quadratic function
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Figure (20)
Average of 20 Local likelihood fits, varying span
Solid line: L.L fit, Broken line: true quadratic function




Figure (21)
Solid line: Weighted smooth: no outlier
Broken Line: Unweighted smooth, no outlier
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Figure (22)
Solid line: Weighted smooth, no outlier
Broken and dotted lines: Wesghted and unwesghted smooths wsth outlier
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5. Asymptotic Results.

5.1. Introduction

Since local likelihood estimates in the exponential family are maximum likelihood esti-
mates calculated locally, it is not surprising that they enjoy (in some sense) the optimality
properties of m.l.e’s. Tibshirani(1984) modifies McCullagh’s (1983) results for generalized lin-
ear models to establish such results for 1.l.e’s in the exponential family. We summarize these
results below. Similar results should be obtainable for the general (non-exponential) i.i.d case
and for the Cox model; we postulate results for the latter at the end of this section.

5.2. Consistency and Efficiency of LLE’s in the Exponential Family

Consider initially a sample {(z1,y1),...(2n,yn)} containing an observation at a point
X = zo. We shall investigate asymptotic properties of the LLE at z,. We assume that
Y1,¥2, - - - Yn are independent realizations of random variables Y7, ...Y,, having density

Y; ~ k(y:) exp{yib; — b(6;) — c(ys,0)} (54)

where 0; = s(z;). Let k, be the number of points in the neighborhood Ng used for esti-
mating 8(zg). Assume that as n — oo, k, — oo, but the neighborhood shrinks so that
maz(; jenny [2i — zj| = o(kn Y ?). We argue below that for estimation of the slope and inter-
cept of the line tangent to s(-) at zo, the LLE is consistent and asymptotically normal, and
has the efficiency of a MLE based on sample size k,. This implies that, for estimation of
8(zo), the LLE has minimum asymptotic mean squared error among all estimates based on &,

observations.

Letting X = (1, z), the score function for the local likelihood at zg is
Up = X'W(Y - u(p)) (55)

where u(8) = b'(X8), and W = Diag{I(i € N§)}nxn-

Let u(8) = E(Y) = b'(0), t3 = Var(Ug) and B = (B;,52) be the coefficients of the line
tangent to s(-) at zo, i.e. B2 = 8'(2o) and B, = 8(zp) — B229. Then under regularity conditions
on §g and the third moment of ¥, and smoothness constraints on s(-) and b(-), we have

k12U g ~ Ny (0, 0% g/ kn) + Op(k71/?) (56)

E(B - B)=O(k;?) (57)



48  Section 5: Asymptotic Results

and
k2 (B~ B) ~ Mo(0, kuo?iz!) + Op(7/2) (58)
These imply the following results for the local likelihood estimate 3(zo) = f; + Bazo:
E(5(zo) — &(20)) = O(k;*) (59)
and
kn/?(5(20) — 8(20)) ~ N (0, kno A) + Op(k7/?) (60)

where A = (1 zo)i;1(1 7o)’

5.3. Some Remarks

o As mentioned previously, we proved the above results by extending McCullagh’s (1983)
results for generalized linear models, McCullagh starts with the score equation D'V~ (Y —
4(8)) = 0 where D = du/dp and V = Couv(Y )o?. (This reduces to the form X*(¥ —u(8))
when the link function is such that § = XB). From this he proves consistency and
asymptotic normality of the estimate 8. Also, he notes that to obtain the asymptotic
results, it is not necessary to assume a form for the likelihood: one need only assume that
the score equation has the form D*V=(¥ — u(g)). Since this equation only depends on
the first two moments of Y, there can be more than one likelihood giving the same score
equation. McCullagh calls any likelihood giving this score function a “quasi-likelihood”.
If Y is in the exponential family and the log-likelihood is linear in g, then the likelihood
and quasi-likelihood correspond. In other cases, there can be more than one likelihood
resulting in the same quasi-likelihood. In this event, the quasi-likelihood estimate may
not equal the MLE, but it is still consistently and efficiently estimates the true parameter.
According to McCullagh, “quasi-likelihood” estimation could be useful in a situation in
which one isn’t willing to assume a specific form for the likelihood, but is willing to specify
a relationship between the mean and variance. The same phenomenen is true in the local
likelithood model— we need only assume that the local score equation has form (55) ,
and the results still hold.

o The results above assumed that the maximum distance between any two points in a
neighborhood goes down at the rate o(k, Y 2). In the local likelihood procedure, the span
is chosen to minimize an Akaike-type criterion. In principle, then, one should show that
selecting the span in this way results in the correct order of shrinkage of the neighborhood.

We haven’t pursued this, however,

e We have established convergence results for the estimate of a single value of the smooth
function. With considerably more work, one could presumably show convergence of the
entire estimated function to a Gaussian process.
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5.4. Asymptotics for the Proportional Hazards Model

In this section, we conjecture an asymptotic result for the local likelihood procedure in
the proportional hazards model.

Suppose n items are placed on test and give rise to (possibly censored) observation times
{v1,y2,...yn} with associated (fixed) covariates {z;, 2..., 2, }. Let &; = 0 if y; is censored and 1
if y; is uncensored, and following Tsiatis(1980), we assume that the triples (y;, z;, 6;) are i.i.d.
Let D be the set of indices of the failures among the y;’s. To facilitate construction of a partial
likelihood, we will make the usual assumption that the censoring mechanism is non-informative
(see Kalbfleisch and Prentice(1980)).

Under the model

At [z) = do(t) exp (28) (61)
the partial likelihood is
PL=T] i (62)
leD EJ'ER: ef*i
and the score function is 5 s
_ _ Zsjer, T i
=% (z, P (63)

Tsiatis shows that there exist a consistent root 4 of the score equation such that
n'/2(B - B) — N(0,v) (64)

where v = f0T° —dQVar(z |R(t)), Q(t) = P(t > t,6 = 1), and T} is an upper bound on Y.

In the local likelihood framework, we assume that the hazard has the form

At |2) = Xo(t) exp (s(z)) (65)

where s(z) is some smooth function of z. The derivative s'(zo) at some fixed point zg is
estimated by fp maximizing the local partial likelihood

eBozi

PLy =
’ H ZJ’ €R,

leDNN}

66
—— (66)

The local score equation is

. » Z;eP0%5
wlfo)= (z,—z’e“"‘”° d ) (67)

. Boz
leDNND EJGRI“NS ¢

As in the exponential family case, we assume that as n — oo, k, — oo and
maz(;jene} |zi — zj| = o(kn Y 2). A reasonable conjecture, under regularity conditions on

8(+), is that the local score equation has a consistent root fo, and asymptotically

kY2 (Bo — o' (20)) — N (0, ) (68)
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where v is defined above. Fixing (z') = s(z') = 0 for some ', a result like (68) could also be
obtained for 4(zo). This would require a convergence proof for the integral estimator s(zo) =
JZ° ¢'(t)dt, and hence consideration of the simultaneous estimation of s(-) at z;,z,,...z, We
will not attempt to prove these results; the simpler case treated by Tsiatis is quite involved.
Recently, more general results for the proportional hazards model (not requiring that the
triples (y;, zi,6;) be i.i.d) have been obtained using a martingale approach by Anderson and
Gill (1982). A modification of those results to local likelihood estimation should also be
possible.

As for efficiency considerations, Efron(1977) and Oakes(1977) show that the partial like-
lihood estimate has good asymptotic efficiency relative to the full likelihood estimate if the
family of hazard models is rich enough. Similar results may be obtainable for the local partial
likelihood estimate.
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6. Degrees of Freedom and AIC Approximations.

In the data analyses of the preceding sections, we have used the formula
degrees of freedom s trace(P). Here we state more precisely the result that is shown in
Tibshirani(1984) and discuss a small simulation study to check its accuracy. Finally, we jus-
tify the use of the AIC is choosing the span. As before, we concentrate on the exponential
family case, although our simulations suggest that similar results might be obtainable in the
proportional hazards model as well.

We assume that the ¥;’s are independent with density of the exponential family form

90,(ys) = ezp(y:0; ~ b(8;) — e(ys,0)) (69)

with respect to some carrier measure. The scale parameter o plays no special role and is
assumed to be 1 for simplicity. Let kg(y) = II} 9o, (v:), and let (0) = (5(61), b(02),...b(8,)).
It will be convenient to instead index k(y) by the expectation parameter p = Epy = b'(6).
The deviance between g and § is defined by

D(y,§) = 2[log ky(y) — log k;(y)] (70)

A single covariate z = (2, z2, ...z, ) is available.

Central in our discussion will be the “smoother matrix” P “corresponding” to a local
likelihood fit §. Given a linear covariate vector z, the running lines smooth of a data vector
v , based on z, can be written as § = Py. We call P a “smoother matrix”; it will depend on
z and on the span of the smoother. Given a running lines smoothing algorithm, it is easy to
produce P— the ith row of P is the output of the smoother applied to the sth unit vector.

For Gaussian data, the local likelihood fit is simply § = Py. For non-Gaussian likelihoods,
the matrix P doesn’t enter in the local likelihood estimation procedure explicitly, but its trace
turns out to be important nonetheless.

Now let §; and §, be two local likelihood fits, based on 2, with corresponding smoother
matrices P; and P;. Suppose that the two smooths produce the same fit on the average, i.e.
E(03,) = E(03,), where in obvious notation, 8y = '~(y). Then it is shown in Tibshirani
(1984) that

E(D(y,1) — D(y, §2)) ~ trace(P;) — trace(P;) (71)

This result is exact for the Gaussian case, where the deviance is the residual sum of squares,
and approximate for other exponential family likelihoods. We describe in the next section a
simulation study to assess the accuracy of this approximation,

Note how (71) generalizes the standard result for global linear fitting. Consider a normal
linear regression model, with variance equal to 1. Let §§; and §, represent the fitted vectors
corresponding to nested subspaces of rank p; and p,, with p; < p,. Then if the true mean
response lies in the smaller space, then the decrease in residual sum of squares due to fitting the
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larger model is xZ,_,,. Result (71) expresses this in expectation, for Kullback-Leibler distance
is Euclidean distance in the Gaussian model, and P; and P, are the matrices that project onto
the corresponding subspaces (recall that that for a projection matrix, trace(P) = rank(P)).
For linear fitting in other exponential family models (GLM?’s), result (71) expresses Wald’s
theorem in expectation.

6.1. Degrees of Freedom Simulations

Table 5 shows the results of a modest simulation study designed to check the accuracy of
the formula E(D(y, §:) — D(y, §2)) = trace(P,) — trace(P,).

Table 5. Results of Degrees of Freedom Simulation

Entries in Lines (2)—(5) are mean(variance) of deviance decrease

Span
Sonrce 3 4 5 (] v
(1) Trace(P) - 1 4.09 3.32 2.65 2.34 2.16
(2) Scatterplot Smooth(y normal) 4.14(10.00)  3.39(7.75) 2.61(6.03) 2.31(5.08) 2.09(4.32)
(3) Scatterplot Smooth(y uniform) 4.19(10.06)  3.46(8.50) 2.77(6.52) 2.41(5.79) 2.21(4.99)

(4) Logistic Model(constant vs smooth) 4.34(13.47) 3.40(11.62) 2.72(9.12) 2.23(7.51) 2.17(6.28)
(5) Logistic Model(linear vs smooth)  3.29(11.71)  2.25(8.25) 1.63(6.21) 1.29(4.58) 1.12(2.89)
(6) Coz Model(no censoring) 5.58(13.37)  4.24(8.99) 3.63(7.52) 3.12(6.25) 2.71(5.48)
(7) Coz Model(40% censoring) 5.36(13.54)  4.16(9.04) 3.62(6.98) 3.13(5.86) 2.73(5.20)

The numbers in the table were obtained as follows. 100 z values were generated from
N(0,1) and fixed for the entire table. Given these z values, we constructed the running lines
smoother matrices for the indicated spans, and the trace of each matrix (minus 1) is shown in
line (1).

Consider for example the entry 4.09 in the top left hand corner. According to the preced-

ing derivation, this should be the expected decrease in deviance due to fitting a local likelihood
model with that span .3 versus a model with only a constant.

To obtain line (2), we generated 100 y;’s from N (0,1) and computed R(y,§1) — R(y, #),
§§ being the fit from a scatterplot smoother (§§ = Py) with span as shown. Line(2) shows the
mean and variance from 500 such repetitions of this process.
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Line (3) was obtained in same way as line (2), except that the y;’s were generated from
uniform (—/3,/3), the range chosen so that Var(y;) = 1.

To obtain line(4), we generated 100 y;’s from binomial(1,1/2) and fit a smooth logistic
model with spans of .3 to .7. The numbers show the mean and variance of D(y, g1) - D(y, #)
over 500 repetitions.

Line (5) was genersted in a similar fashion as line (4), showing instead the mean and
variance of D(y,§1) — D(p,§), #1 being the linear logistic fit, with y; generated from a linear
logistic model, P(y; =1 |z) = e22/(1 + ¢22).

Lines (6) and (7) show simulation results for the Cox model. 100 y values were generated
according to y = ezp(1 + ¢€), where ¢ had an extreme value distribution. This corresponds
to a constant hazard (exponential) model. For line (6), no censoring was applied. For line
(7), censoring variables ¢; were generated from ¢®, u ~ Y(0,1). This produced a censoring
rate of about 40%. A smooth Cox model was fit and the quantity —2log L(null model) —
(—2log I.(smooth)) was computed. Lines (6) and (7) show the mean and variance of this
quantity over 500 repetitions.

Note that for all the models, a span of 100% gives either exactly or asymptotically a mean
value of 1 (by Wald’s theorem), and trace(P) — 1 is also equal to 1.

The results give fairly strong support to the approximation E(D(y,§,) — D(yp, #2)) =
trace(P,) — trace(P;). Lines (2) and (3) agree well with (1), not surprising since the approx-
imation is exact for scatterplot smoothers. Line (4) also is in good agreement, with a small
upward bias for smaller spans. Line (5) should be 1 l=ss than line (1), (since the global linear
fit uses 2 degrees of freedom) and the results indicate that. For the Cox model, the trace
formula is biased downward, especially in the lower spans.

The variance results are a little unsettling. The variance to mean ratio is often greater
than 2 (the ratio for a chi-square variate), especially for the non-gaussian models.

We conclude from these simulations that the approximation E(D(y,§;) — D(y, §2)) =
trace(P;) — trace(P;) is satisfactory as a rough rule of thumb, for the gaussian and logistic
models. We do note, however, that the distribution of this decrease is more spread out than
a chi-square variate with the corresponding degrees of freedom, so that tests based on the
percentile points will be too liberal. The downward bias of trace(P) the Cox model does not
cause a serious problem in the AIC formula —2log L + 2trace(P), since the bias will tend to
cancel out in comparing the AIC for two spans. In assessing the significance of a Cox smooth
in real examples, however, we find the mean decrease by simulation as in Table 5. Indeed,
for any of the models, it may be preferable to get “exactly” the distribution of the decrease
by simulation, for these simulations are not expensive. Finally, we would like to acknowledge
that the idea of finding degrees of freedom by simulation for a scatterplot smoother was first
suggested to the author by Arthur Owen.
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8.2. Akaike’s Information Criterion(A4IC) For Span Selection

Using the results of the previous section, we show in this section that it’s reasonable to
use an AIC criterion to choose the span in the local likelihood estimation procedure.

Let’s briefly review the AIC for a parametric model. Given a model kg, suppose we
can choose among maximum likelihood estimates fi;, fiz, ...J5 based on py,ps,...p; degrees of
freedom respectively. Suppose also that each model can be considered a sub-model of a true
model ky,. Then Akaike’s information criterion (AIC) (Akaike 1973) specifies that we should
choose the estimated model that minimizes

AIC = —2log k;, () + 2pi (72)

Akaike derived the AIC by showing that E(AIC) s E(D(p, ji;)) + constant. Hence the
model that minimizes AIC approximately minimizes the expected Kullback-Leibler distance
from the true model.

From the form of the AIC, it is clear that it attempts to trade-off goodness of fit of
the estimated model with its complexity. Not surprisingly, it turns out to be identical to
Mallow’s Cp, i1 the linear regression setting and asymptotically equivalent to the cross-validated
likelihood technique in general (see Stone (1977) for these results).

In the local likelihood procedure, we propose choice of the span parameter s to minimize
AIC = —2log ky(,)(¥) + 2 trace(P(s)) (73)

where P(s) denotes the smoother matrix producing running lines fits with span s, and §(s)
denotes the corresponding fitted values. This makes sense intuitively: as the span s increases,
the first term will (generally) increase but the degrees of freedom trace(P(s)) will decrease.
Hence the AIC will trade off lack of fit with complexity of the smooth.

In Tibshirani (1984), we show that the AIC approximately equals a measure of expected
distance to the true model. The logic of the derivation follows that of Akaike (1973). Consider
the exponential family set-up of the previous section. Using the notation of that section, we
let P be a running lines smoother matrix corresponding to some span. Then we show that

E(D(po,#)) ~ —n + 2 trace(P) (74)
Noting that D(y,§)) = —2log kg(v)) + constant and also that n is constant for all spans, we

see that the fit § minimizing the AIC criterion (73) , minimizes an estimate of distance to
the true model k,.
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Software

Fortran programs that compute local likelihood estimates in the Cox model and in gen-
eralized linear models, are available from the author.
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